Topological properties of Abelian and non-Abelian quantum Hall states classified using patterns of zeros

نویسندگان

  • Xiao-Gang Wen
  • Zhenghan Wang
چکیده

It has been shown that different Abelian and non-Abelian fractional quantum Hall states can be characterized by patterns of zeros described by sequences of integers Sa . In this paper, we will show how to use the data Sa to calculate various topological properties of the corresponding fraction quantum Hall state, such as the number of possible quasiparticle types and their quantum numbers, as well as the actions of the quasiparticle tunneling and modular transformations on the degenerate ground states on torus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological order in the fractional quantum Hall states

This thesis is focused on the theoretical characterization of topological order in non-Abelian fractional quantum Hall (FQH) states. The first part of the thesis is concerned with the ideal wave function approach to FQH states, where the idea is to try to obtain model wave functions and model Hamiltonians for all possible FQH states and to have a physical way of characterizing their topological...

متن کامل

Non-Abelian quantum Hall states and their quasiparticles: From the pattern of zeros to vertex algebra

Citation Lu, Yuan-Ming et al. " Non-Abelian quantum Hall states and their quasiparticles: From the pattern of zeros to vertex algebra. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. ...

متن کامل

Skein Theory and Topological Quantum Registers: Braiding Matrices and Topological Entanglement Entropy of Non-abelian Quantum Hall States

We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read–Rezayi state whose effective theory is the SU(2)K Chern–Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we prop...

متن کامل

Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as th...

متن کامل

Classification of symmetric polynomials of infinite variables: Construction of Abelian and non-Abelian quantum Hall states

The classification of complex wave functions of infinite variables is an important problem since it is related to the classification of possible quantum states of matter. In this paper, we propose a way to classify symmetric polynomials of infinite variables using the pattern of zeros of the polynomials. Such a classification leads to a construction of a class of simple non-Abelian quantum Hall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008